Algorithmische Bioinformatik I

Abgabetermin: Donnerstag, den 30. Juni, vor der Vorlesung

Aufgabe 1

Sei $s = s_0 \cdots s_{m-1} \in \Sigma^m$.

- a) Zeige, wie sich die Z-Werte Z_2, \ldots, Z_{p+1} ohne Zeichenvergleiche bestimmen lassen, wenn $Z_1 = p > 0$ gilt.
- b) Zeige, wie sich die Z-Werte Z_1 sowie Z_3, \ldots, Z_{p+1} mit einem Zeichenvergleich bestimmen lassen, wenn $Z_2 = p > 0$ gilt.

Hinweis: Begründung nicht vergessen.

Aufgabe 2

Gegeben sei eine Menge $S = \{s_1, \ldots, s_\ell\}$ von Zeichenreihen mit $n = \sum_{i=1}^{\ell} |s_i|$. Konstruiere einen Algorithmus, mit dem man in Zeit O(n) alle Zeichenreihen $s_i \in S$ finden kann, die Teilwörter einer anderen Zeichenreihe $s_j \in S$ sind.

Hinweise: Ein Suffix-Baum kann helfen. Korrektheitsbeweis und Laufzeitanalyse nicht vergessen.

Aufgabe 3

Eine Zeichenkette $w' \in \Sigma^*$ ist eine zyklische Rotation einer Zeichenkette $w \in \Sigma^*$, wenn es zwei Zeichenketten $u, v \in \Sigma^*$ gibt, so dass w = uv und w' = vu.

Beispiel: BAUMAST ist eine zyklische Rotation von MASTBAU.

Entwirf einen Algorithmus, der für $s \in \Sigma^m$ und $t \in \Sigma^n$ in Zeit O(n+m) feststellt, ob t eine zyklische Rotation von s enthält.

Hinweis: Korrektheitsbeweis und Laufzeitanalyse nicht vergessen.